Актуальность проблемы приближенного вычисления собственных значений и собственных векторов несамосопряженных операторов возрастает в связи с возникновением новых задач физики и механики. Как правило, приближенное решение этих задач сводится к вычислению собственных значений и собственных векторов конечномерных матриц. Для матриц больших размерностей вычисления собственных значений и собственных векторов являются трудоемкой задачей даже для современных быстродействующих вычислительных средств. Поэтому последние 40-50 лет появились многочисленные исследования, посвященные методам вычисления собственных векторов и собственных значений конечномерных матриц. [1]-[5].
Хорошо известно, что вариационный метод позволяет весьма эффективно организовать вычисления собственных векторов и собственных значений самосопряженных матриц. Для несамосопряженных матриц дело обстоит гораздо сложнее. В данной работе используется, вариационный метод нахождения собственных значений и собственных векторов несамосопряженных матриц сводим к вычислению собственных значений и собственных векторов самосопряженных матриц.
Список литературы:
1. Воеводин В.В., Кузнецов К.А. Матрицы и вычисления. – М.: Наука, 1984.
2. Богачев К.Ю. Практикум на ЭВМ. Методы решения линейных систем и нахождения собственных значений. – М.: МГУ, 1998.
3. Дробышевич В.И., Дымников В.П., Ривиков Г.С. Задачи по вычислительной математике. – М.: Наука, 1980.
Елеуов А.А., Спабекова Ж.Х. ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ НЕСАМОСОПРЯЖЕННЫХ МАТРИЦ // Научный электронный архив.
URL: http://econf.rae.ru/article/7958 (дата обращения: 23.12.2024).